Ergodicity of Billiards in Polygons with Pockets

نویسنده

  • N. Chernov
چکیده

The billiard in a polygon is not always ergodic and never K-mixing or Bernoulli. Here we consider billiard tables by attaching disks to each vertex of an arbitrary simply connected, convex polygon. We show that the billiard on such a table is ergodic, K-mixing and Bernoulli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation and Billiards

This survey is based on a series of talks I gave at the conference “Dynamical systems and diophantine approximation” at l’Instut Henri Poincaré in June 2003. I will present asymptotic results (transitivity, ergodicity, weak-mixing) for billiards based on the approximation technique developed by Katok and Zemlyakov. I will also present approximation techniques which allow to prove the abundance ...

متن کامل

1 9 N ov 2 00 7 APPROXIMATION AND BILLIARDS

This survey is based on a series of talks I gave at the conference " Dynamical systems and Diophantine approximation " at l'Instut Henri Poincaré in June 2003. I will present asymptotic results (transitivity, ergodicity, weak-mixing) for billiards based on the approximation technique developed by Katok and Zemlyakov. I will also present approximation techniques which allow to prove the abundanc...

متن کامل

N ov 2 00 6 APPROXIMATION AND BILLIARDS

This survey is based on a series of talks I gave at the conference " Dynamical systems and diophantine approximation " at l'Instut Henri Poincaré in June 2003. I will present asymptotic results (transitivity, ergodicity, weak-mixing) for billiards based on the approximation technique developed by Katok and Zemlyakov. I will also present approximation techniques which allow to prove the abundanc...

متن کامل

On the Rate of Quantum Ergodicity on hyperbolic Surfaces and Billiards

The rate of quantum ergodicity is studied for three strongly chaotic (Anosov) systems. The quantal eigenfunctions on a compact Riemannian surface of genus g = 2 and of two triangular billiards on a surface of constant negative curvature are investigated. One of the triangular billiards belongs to the class of arithmetic systems. There are no peculiarities observed in the arithmetic system conce...

متن کامل

Rational billiards and flat structures

1 Polygonal billiards, rational billiards 3 1.1 Polygonal billiards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Examples: a pair of elastic point-masses on a segment and a triple of point-masses on a circle . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Unfolding billiard trajectories, rational polygons . . . . . . . . . . . . 5 1.4 Example: billiard in the unit squar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997